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Them $8 studfcrd the behavior of the jumps of derivatives of &e diq@cemeets 
on wave fronts of the week d&conWty type and weak r$ocirr b&g propagat- 
ed a0 4 I&&&ear hypeeeWIc muilum, ‘r&e ir prsagntced the OdicQtucy in- 
form&&s oaecee4aiag rtrc: covariant dM4u&%a~ti&rartptcttotimefortile 

of differeM stmcture deBned on a moving wzrfaee, es wtu. a2 formulas 
for the derivatives of certain t- f&&k and for the change fn Gary die 
ve!rgwe along the rays. 

Kmm ray mahocls of calcutting the ia@nsity of wave fronts fl] lead to a number 
of idcnatty reletio=bi~ which are &i&d by the veleu of the ~~~ of the 
derfvettves setisfy on the bi~~~~; these tkulof 
their subsequent valued by means of the jump iu the deri of the ~p~ern~~ 
given at the initial instant, and thereby permit the separation of the analysis of shong 
or weak discontinuitie8 from the investtgatiou of the solution at the remaining points 
of the space. Nowever, the me&oQ n [l] are esentielly related to the 
lilleerity of the problem% Recently, ( ~v~ga~g singular surfaces, based 
on the use of ~rn~~i~~ ~~~ end tquatfoytt ~~c~~y b rsnrttive to 
noalinearity [2,3] have been used extensi~ly: in studying weak dtcoatinuities t&e 
methods alro permit obtaining the necuaary identities on the bicharacteriatics. In the 
second scheme, however, the analysis of &o&a in n-r mudia is not included 
successWly atace the fundamental role of the bkharacte&tic is eliminated to a &g&i- 
cant extent in this case. On the other hand, according to the reseib ia [a,!& ray rt- 
preseutatfon$ turn out to be quite u&i11 in the Westigation of weak &o&s in fieids. 
when the no&War formutoRiaa results 1 rub&atially diffcrut damping laws aa corn- 
pared to. the acautic laws. The method of inveetigartng singular surfacesued in tb& paper 
k guite gurupl aud cti of using an in&&e set of partial differential wuatioar (the 
gowning sy&m) obtained by using different competibMy relations. fn the linear 
case the equations of the goveming system are e@vaLtat to the tren4xst formules acb- 
ievtd by known rey methods. The govemiug qrstem can be used to study diffezeet kinds 
of singular surfaces beiag propagated in different materials. For “shock” slgulartitfea 
of linear hyperbolic problunr and for weak d&eoutinuitfer of nonlinear PJobkcms, the 
goveming system turns out to be reaudver 1. e., the fist M equattonsof t&system 
completely deecdbt the change io the &at M - 1 nonsero vectors of the df#*wtinu- 
ityl which permitS &Ed&g t&MM! vC.CtOrS in tUBI. ~~c~of~~~~~r~y 
elastfc medium, the r42cimiwm d tht gomnbg system i3 viol&id it iragnin rtsbf- 
ed, however, in each osder of the SucceWve approximations WhM flndi%? the ~~~tfon 
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of the governing system in the form of a series in a small parameter characterizing 
the scale of the weak shook inter&~ at the inittal instant. Relationship6 corresponding 
to the first approximation differ significantly from the acoustic relations [l, lo], but 
agree completely with those obtained earlier for weak shacks in a fluid. A different 
method of studying weak shocks, on the bsrit of using an infintte system of identittu 
has recently been proposed fn [ll% 

The crux of the proposed approach is demonstrated in Sect. 1 by the simple& ex- 
ample of a model gasdynamics equation (it shonld however be kept in mind that al- 
though the analysis of the model equation yield the basic features of the method and 
the structure of the squatMu which occur, two aspects of the general situation are lost 
hue: firstly, the one-dtmensionality of the problem makes the ray construction trJvtal, 
and secondly, in the case of one dependent variable the singnlarities in the f~~~~~ 
of the initial data for the governing system are not seen), The equation of motion of 
a hypuelasffc body are presented in Sect. 2 in components referred to the initial con- 
figuration; there is a derivation in 1.223, for instance, from which certain notation is 
also borrowed. The necedsary information about covariant differentiation with respect 
to time, of tensors of different constructian defined on the moving surface is presented 
in Sect. 3; this formal apparatus tnrns out to be quite effective in sprig the awk- 
ward equationa governing the system. One of the stages in investigating weak shocks 
by meam of the scheme proposed in thts paper turns out to be equivalent to studying 
the propagation of weak d&conttnuitiea: the treatment of this latter problem, however, 
given in [2,3] turns out to be inadequate for the purpose8 stated (particularly in the 
part concerning the fntmduetion of ray& in this connection, a ffew examinatton of 
the problem of a weak ~n~~~ is given in Sects. 4 and 5. Moreover* the study 
of this latter problem specifies the form of the Mttal conditions for the governing system 
and the method introducing the ray coordinate system in the shock case. Weak shock 
propagation in the unperturbed domain of a hyperelastic body is examined in Sect. 6. 
Finally, refinements of the pmcedtng results (concerning waves with an isolated eigen- 
value of the acoustic tursor), which are needed to analyze fronts of tmnveme type 
be&g propagated in an undeformed domain of an isotropic nonlinearly elaatfc body are 
presented in Sect, 7. 

1. The model gasdynamics problem is to solve the Cauchy problem for first order 
partial differential equations with two independent variables z, t and one dependent 
variable Y (2, t) 

(1.1) 

The condition 

(1.2) 
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where I 1” denotes the jump in the quantity and c is the rate of displacement 
of the diseontfnuity, should be satisfied when finding pi~ew~e-e~~~ solutions 
at pointa of the discontinuity. 

Let the law of discontinuity motion be 2 = 2 (t), where 2 (t) is a sufficien- 
tly smooth funcUon, Let us kts~stme that the behavior of the solution v (2, E) and its 
derivatives of the necessary order in the left- and right-sided wmicircltea of the dis- 
c~~ui~ satisfy the conditiaur for a~pU~ab~~ of the kkdamard lemma [X33; we 
shall henceforth call au& dfsconUnuiUu ngular. The limit value of the dtseontinu- 
ous quantity will be marked by a plus @rrtn@ sign if it approaches the diaeontinuity 
from the right (lefth these limit valuu are clearly functiona of just orre independent 
variable, the time t , for irosmre. In conformity with the Hadamard lemma, we 
have 

(1.3) 

Subtracting the nfsti~ (1.3) with phrs aud minu# atgus term by term, we arrive 
at the corn~U~~~ ~~U~~ for the ~~~ff~ 

a”+la(2, f) 
1 

+ dxi (t) 
at&...& - 

= - - c(t) Ktcl (f) 
dt 

x0 (t) = fU(Z, q’, xi (8) = 

(1.4) 

We proceed as follow8 to obbin the goveming system. We obtain the first squat- 
ion by qattng the jump on the diseenUnuity in the left side of (1.1) to zero and re- 
placing 1% (2, t) I W]” accordfag to the ffnt (i = 0) OftheconywtibiSfty reM&on* 
shfps (1.4). To obtain the i -th equaUon of the governing system, the same proeed- 
ure should be applted to the equation occurring to an i -tuple dif&renUaUon of (1.1) 
with respect to z, hence (#+%I I t%Sz...~z~~ should be replaced accordirtg TV (1.4). 
Expressing the limit values on the left by using xI and the limit values on the rtght, 
we obtain 

. . . . . . . . . ..a.......... 

dXi 

dt= xir1 Ic - f’(V+ - x0)1 + Ec ( 
ai+1 u 

x0, * * *1 Xi, u+t * f *, a=. , * &+j 
. . . . . . . . ..*......*........ 

(1.5) 

In the case of a shock discontinuity the system (1.5) is supplemented by the relat- 
ionship reaulttng from (1.2) 
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According to the definition of the velocity of the ~c~~~i~, we have 

(1.7) 

The relationships (L 5) -( 1.7) form the governing system which the function XI 
(0, g (89 c @) sauJfy* We suppremeslt this system by the initial conditions 

xi ($1 = ai, 2 (0) = z*. 

Remark. 1’. Another (~~val~t) system can be obtained in place of the 
governing system (1.5) -( 1,7) by using an Z 4uple differentiation with respect to 

t) say, in the i 41 equation. Additional compatibility relationships for the dtscont- 
tnuities of the dwrivativea would hence be required. 

2” Let us assume that the functions u+,. . ., &/& . . . @z+, . . . are known as func- 
tionsof t , and let us examine a j -th order weak ~~~~i~, In thts case the 
functions XO, &,. * ., %+I VU& by de~~o~~ and “$9 0 G’2+ 1). Equation 
(1.6)andtheffrst j-- 1 equations (1.5) are hence ratisfted automatfcally, and c = 

f’ (D+) follows from the f -th equation, The system (1.5) is recursive in nature,i. e, 
any of the M ffrst equations are closed relative to their unknowns~ which affords a 
pcusibiltty of solving them alternately, from top to bottom. In this case the theory of 
ordinary differential equations ~b~tia~y assures the uniqueness of the solution of the 
goveming system, The recursive nature of the governing system is conserved for dis- 
continuities of the shock type (xg # 0) when the modelequationfsUrear (i. e., the 
function f is linear). The validity of using several of the first equations of the govem- 
ing system fs also evident from the discusdon presented, even if utilization of the re- 
main&g equations is impossible because of the inadequacy of the srn~~~ of the 
fun&&r f or the inadequate regulariQ of the ~~~~~. In this puue, the method 
under consideration for the investigation of singular surfaces is not related essentially 
to the analyticity canditions, 

8”. The functions o (t), u+, . . .) a% / az. . . a+ . , . are not ordinarily known 
in advance as fnnctions of time. However, a slight rn~catt~ permfts use of the 
gov~~g system in the following situation of practical importance. Let the kxation 
of the ~~~i~ and the value of the jumps x1 as well as the fact that the solution 
ahead of the discontfnuity is a part of the everywhere-smooth solution IS+@, 1) given 
in advance, be known at the iuttial time (for instance, the function V* (z, 2) SE o) 
corresponds to wave propagation in the unperturbed domain). Determine the location 
of the wave z (t) and the functions *i O)* The ~~~~tion ui = v* (2, f), i3v (2, 
i i a~+ = a~* tz, tf 1 a2 , etc. I should be performed in the govem~g system in exam- 
ining such a problem. 

4’. Just because the equdtions of the governing system are nonlinear, tbetr solutions 
generally exist only in a bounded time interval: however, even within the domain of 
existence of the solutions, the initial hypotheses of applicability of the system can be 
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violated (for instance, if the weak discontinuity under examination is overtaken by a 
shock, the conditions of appIicabiIity of the Hadamard lemma are violated). 

It can be seen that the governing system corresponding to a shockdiscontinuity and 
a nor&rear function f turns out to be non-recursive. The uniqueness of the solution 
of the Cauchy problem for the governing system is hence vioIated if no other addition- 
al conditions are imposed. Indeed, evoIuUon of the shock depends substantially on the 
state behind the front C53. Since oniy the constants at enter in the Cauchy problem 
out of all the infamation about the ttate behind the front, it is sufficient to select two 
different functions with identical values at in order to see the nonuniquenaa of the 
solution. 

However, it is conve&nt to use the govexniag system in the investigation of weak 
shocks. We call a shock weak if the cocrditioar 

z (0) = z*, x,, (0) = 8, zl(o) = a,, . .., %N (0) = f&v, . . . (1. a 

are satisfied at the initial time and the functions z (t), c (t), xp~ (t) can be approx- 
imated by segments of series saUafyfng the governing system and the initial data (1.8) 

(1.9) 

pa0 

Substituting the series (1.9) into (L 5) -( 1.8). it can be noted that the governing 
system 11 recurW#ineachorderin e. Th.isauuresu~ofthcludcr(1,8). 

Remark 5’. It can be seen that the functiars 20 (Q, co (t), xl@ (t) agree with 
the corresponding functions describing prupagath of a weak fisst-e&r dircolltirnuity. 

Leturaumiacaw~rhockbdngp~~~~tnirn~ domsla. Inthb 
case the functioat xo 1 (t) and xl0 (t) deacr%ng the ofthe tit&l&i- 
ity u and &@z inthelowestapproximationin e havetheform 

x01 U) = 
1 

)/i-~f”(U)a,t ' 
x10@) = I -f(f;U)ca~t ( 1.101 

It foIIows from (1.10) that the coefficients of the series (L 9) become infinite for 
f” (0) al > 0 in the finite time 1 / f" (O)% . 

In order to obtain a certain idea concaninghow the unique soiution of the govun- 
ingsyrtemoftheform(l,Q)~~b~rtatcbcrhtwt~~tb6ek, Ietusconsider 
thefuncttal f= vV2 andtheWialcondit&m z(0) = 0 and x0(o) = a 
(according to the Germain -9adet stability conditions [1441, onIy diccoatfaritiea for 
Which e < 0 should be ca&dered)r xi (0) = oi and XN (0) = 0 for N > 

2. In this case, ttte mia (1.9) is sacct*ll(htly defined compWely, in particular 
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It can be canfIrmed by the method of ~acteristicr that the state bebind the wave 
fr3llt at the initial time 0 (2, 0) = --e--q corrcs~ to tbe sohltion (1. II), 
where only tbc initial state in tbc domain - eia, < 2 < 0 affects the evolution 
of the shock for a, < 0 (if the shock outnmning that tmdex consideration certainly 
doesnotleavcthedomain Z< -c~~;tbcfuncUon -8 --u&z is&Taylor 
sex& detamincd by the coefficfc~ts 4% / & . . . &_ = - xj (0). As follows 
from (I. ll), for % < 0 the fun&ions XO ($1 and x, (t) dimp to zem (accord- 
ing to (I, 10) the fist members of the series (1.9) fa the ubftrary function f and any 
initial data satisfying the coudition f” (0) a, < 0) have the samcdrmpingnatmc). 
The asymptotic law (as t s 00 ) of damping of the shoc& intensity x0 - con& 

fl results fkom (1, Xl), As has been shown in [15], this asymptotic damping law 
ts quite unfvesal, as alro p&ly results from (1. 33, (1, ll) and the fact that any 
profileinthcdomafn --e /% < 2 < 0 is almost linear for uffkienUy small 43 
andfixed al(O. 

2. At any ttmc t tiic Lagrange camNnatcs z’,ti,Za c-dtoapoint 
2 of a conUnu~ body‘ fa the initial &ate the ~~~0~~ x ($ ~~~~~ 

the necessary numhu of tfmes, the metric tesuor Sj$ (z), it+ (z) which ir used 
to~~dl~~&~~~ thebases xi (4 = ax I a& x4 = tix, 
all oorreqxnd to the pofpt a . The oovarfant derivative on the barit of the metric 
tens09 xjj h denoted by a Latin index &es the vertical bar. In the deformed rtatc, 
tbc radius vector x (XV t) =x+u * whese u (2, 9 = r& (z, t) x( is 
the ~p~c~~t vector* cwponds to the pow I+ 

If a hype.relas?ic body is characterized by a potential 9 (3, uut) and the dent- 
ity in the initial state m (z), then the fo~g ~~~~ thatld be satisfied 
in the domain of twioe continuauly diffezentiablc displacements (for rimplicity it is 
assumed that there are no mass forced) 

If a Uqq~lar surface is propagated in the body 

i z = f (P, t), t = 1,2,3; a = 1,2 (2.2) 

on which the d&placements are continuous and their dertvatlver undergo a dtsconttnu- 
itys thco the ciondftions 
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(2.31 

skould be satisfkd bemuse of the 1 law of bairn conservaii~ 
Witbt dcztvfiq the &a 2.3). let ut just We &at nj (E, t) are com- 

ponents of the unit normal n in the initial basis, and c (6, t) is tke Vsmacrty fn 

the directia of this normal which clwacttrtao a *rrface with the radfiu-v&r 

(3.1) 

Here xjk fx) is an affinity of the second ltind of the initial c~~raff~* The 
operation (3.1) is covariant relative to the natural substitution x1‘ = xi’ (x’), y = 

t”“’ (p, t) for the coarfderation of a moving surface [16]. In the gen@sal case the 
definition (3.1) neither agram with the Themas fl7] &ft@ion of the 8/& dedvat- 

ive nor wfth the Tmudell -Tupio definition [16]. However, the operatim (3.1) is 
eqtzivalent to the Thomas dwivative fq trrttarr having @oiy !+atin indices, and is equiv- 
alent to the Tmesdelt -Tupio derivative for tensozs having only Greek &dices, and 

tm having o&y Lattn indices v&&h arc *cooWW”. The tensor ?‘.:* (%, t) 
ti a “~oatta~tfd’ of the WISOI Tfj (3, t) if Tfj’ (E, t) = T!j (Z (e, E), t). 
It follows from the above that the opeatfon (3.1) conserves the relatfo@Q obtained 
earlier [lS, 171: 
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b7i l 

‘)= 
A’l’f, (I, q* 

br dl 
+ C?ZkTfjlk (5, t)’ 

(3.2) 

bz... ts3.i 
_.I ” 

@’ Kzi :k 

hf 6r 
=-=~=o 

6: 
(5ll ; 

- qc,x:iP, Q%p 
ht= nr 

= - 2cb,F,, 

Here bxfi (E, t) = &;p,ni is the tensor of the second quadratic form of the 
surface (2.4). Using the definition (3.11, we obtain 

h2, 
= (CL&, 

nq neap _ 
7 = 0, bt - - 

hew &&ap, - = (3.3) 
7 irt 

cb:N 

6x* SE 
- = x - c = cn, 

@a err 
St 

6t - 0, 7 = (&x 

Here &p (5, t) is the discriminant tensor of the surface (2.4). 
It can be confirmed that the Leibnitz formula for the derivative of a product is 

valfd for the operation (3. l), and commutation of differentiation and convoIutior~ is 
aIso possible. 

Henceforth, for a special seIection of the coordinate system p the object (2.4) 
wiII be considered as a two-parameter set of rays, each of which isdefined by the 
reIatio&.ip (2.4) for fixed p . The combfnation DF’ (c, t)/Dt = &F’ / 6t -I- 
VW!;, agrees with the absolute derivative of the teuor F’ (f, t) along the ray. 

The quantity J (f, t) = I LQC: (El t) I “9 / I Enw 1 (E, to) I ‘$ b cam the w- 
metric divergence; the following reIat&hi$ is valid 

aJ (E, t) -= J(v;, - cb:) (3.4) 
at 

The definition (3.1) conscrvc~ the form of the compatibilfty relationrhipl Cl6 - 
184. Discontinuities in the dafvatives of the dispkement field u’ (z, t) can be 
expressed in terms of the geometric and kinematic characteristics of the singular sur- 
face, as weI1 as in terms of vectors of the discontinuity 

n?.. r.P 
h:N (E, t) - [u&,...,~ I_’ 

(it fs clear that the numbering index N of the discontinuity vector is 
not tensaW and their dedvatives. In particular, we have on the rurfoce of discont- 
inuity of the Brst derivative 
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US tbm g73, the folzow&ig two 
WhiCh brre of the CO~~~~ 
ties of the bi@m dcrtvatives 
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the solution from one side of the surface of discontinuity. To obtain the (N i- I)-yh 
equation, the same procedure must be followed with an equation obtained from (2.1) 
by differentiation with respect to a?*, . . . . x’N after which the result is convoluted 
with W , a--, 0. This system ahculd be supplemented by (2.3) treated in an 
analogcus manner in examining a shock. 

Let us show by induction that if the kinematics of the surface of weak discontinuity 

@f, = 0) , the limit value of the derivatives of the solution ui (.q t) on one 
side of the wave (see Remark 3’) and the values of the vectors hf,, .*., h:M are 
known at the initial &&ant, then the fiat M equatioos of the governing system will 
permit detam&ation of these vectan in a certain time interval. Following the Re- 
mark 2’, we designate this property the reamact of the governing ?yctem altbcugh 
the fists A# equations are already not clued relative to the vectors they defined (the 
vector h&+J also enters). An equivalent result was first obtained inC2,33fuanothu 
iIlterpretatiorL 

By using the first relationship (3. ‘7), the first equation of the governing system can 
bc reduced to the followfng form 

(mc*xf” - Qik) hkp E= 0, Qik = tp%zp, 

In the i&rat of reducing the writing, the arguments of the fimctfom tntheg0vun- 
ing system equations are not written down; in this connection, it shatld be kept in 
mind that in the long mn p and E are the fadependent variablea in these equations, 
for mce #jkl = lim ,-p’ (s, r&/t& (5, Q) in (4.1) as zi + I (E, t). 

Since hkz # 0 oa the acceleration wave (the proof b carried out for a weak 
discontinuity of order 2, for definiteness), this vector is the nontrivial solution of 
(4.1) and c’ (E, t) correapondo to one of the eigenvaluea of this system; we differen- 
tiate the other two eigenvalues by the value of the subscript L ; the realness of the 
cigenvalues is otrured by the symmetry of the acoustic tensor pk. 

Let us auume that es (5, t) =#= cL2 (E, t). 73~ efg=-t= ei (E, t), 
efL (6, @correspond to the eigenvabies ca and cLLI . If all the eigenvaluea are 
dWinct, we have 

xi’elejL = 0, xiief,ef2 = Q (4.2) 

If Cl2 = c,*, then the selection of the eigenvectors elL (6, t) is subject 
to the second of conditions (4.2). Considering the kinematics of the singular surface, 
and the solution on one side of it, known, in principle the functions c” ck* t), 

CJL~ (f, t), ei (E. t), efL (E, t) should be cousidered known. Therefore, the deter- 
mination of the vector hg, (E, t) reduces to determining its modulus h 6, t) 
which can be done by using the second equation of the governing system. Convolut- 
ing the second ecfuatico with ei 6 $1, after awkward ~~~~ti~ using the 
properties of the &/6f derivative (Sect. 3)‘ it can be reduced to the form 
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The plus riga deuotes the limit value of the appropriate cl;t~con~ous pumtity on 
that side of tic s&ular surface where the motion is aaMm& known. The condition 

c (E, t) > 0 * which can always be achieved btcamt of the selection of the normal 
direcffofl, was used in obtainfng (4.3). 

No specific c.oor&ate system ori the iar surface has yet beers set. Let us do 
thfs, namelyr let us require that the relationship 

(4.4) 

be sawed in the coordinate system to be set. We shalt call such a coordinate system 
on the surface a ray system (the question of its extstence is exam&ed in 3ect. 5). 

By using the properties of the 6f8t derivative and the relations (3.4), (4.41, the 
equation (4.3) in the ray coordinate system can be reduced to the following: 

This is an ordinary diffemaffal equation containing 5” as a parameter, w&h will 
permit determination of tC (I$ t) in a cestaia time M+erval by meaos of the initial 
data h (!& to). 

Now, let us assume that the vectors I&fN have already been determined for iV 

;fR* We shall seek the vector k.!R+I f$,, t) in the following form 

(4.6) 

(R2i+Xik - Qik)hkM t- L)’ (hkg, . . ., hkd = 0 (4.71 
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Here Di is a differential operation with respect to p, t of their ar~rnen~ 
including also the geometric and kinematic characteristics of the surface of discontinu- 
ity and the limit values of the derivatives of the displacement on one side, which is a 
known function of p and t by the inductive assumption, Convoluting (4.7) with 

eiJa and using (4.2) and (4.6). we obtain 

There remains to determine b (E, t) . To do this we ute the governing system 
equation with number R + 1, which is reduced to 

(4.8) 

where Fi is a differential operation of the first R - 1 arguments, and an algebraic 
operation of the last. Let us convolute (4.8) with et ; in the ray coordinate system 
the equation obtained will be reduced to the form 

db (E, t) I dt = G (b, E, t) (4.9) 

Here G is the customary function of its arguments. Therefore, (4.9) is an ordin- 
ary ~~~81 equatfon containing p as a parameter and permitting t& determi- 

nation of h(%, $)tn a certain time interval by means of the initial data, The induction 
is co,mpleted. 

Remark 6’. It is evident from the discussion presented that at the initial inst- 
ant it is snfflcient to know not the vectonr of the discontinuity & (E, to) but just 

their components kilo (5, to) d(g, to). 
The proof presented for the recurrence of the governing system goes over without 

substantial changes to the case of higher order weak discontinulties and to the case of 
“shock” discontinuities of linear equations. 

5. The kinematics of the surface of weak discmtiquity was assumed known in 
Sect. 4. A procedure to determine the functions x’=& (%a, t) which yield 
the location of the wave in a certain time interval by means of the initial data, is 
considered below. 

We start the description of the motion of the surface of weak discontinuity with the 
question of the existence of a ray coordinate system thereon, i. e. ,a coordinatesystem 
in which condition (4.4) is satisfied. Let US assume that the surface of discontinuity 
is given in a certain time interval to ( t < tl by using c~tinu~ly differentiable 
functions xi = xi‘ (%a: t) s where the matrix of the metric tensor 11 &ta (E’, t) 11 
is nondegenerate. 

It can be shown that for a certain time interval to < t < t, specific continuous- 
ly differential functions p = %a (%a’, t) (having the inverses %a’ = go’ (%a, t)) 
exist uniquely to that El (p’, to) = El’, Es (p’ , t,,) = p’, and the coordinate 
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system on the azrface %a will be a ray system, i. e., the xalatiooat@s (4.4) will be 
satisfied fat the fitactia Xi (P, $1 S z”(F’ (P, t), t) . 

&I fact, the CbftetJ fn the left and right aides of (4.4) am defined coaectly for 
the functfoas z+’ (%‘, t) (it is true that the relation (4.4) is not generally urtirtied 
for them). Let (EQ’ (%‘, t) and w (%’ , t) denote these objects, rqe&&ely. upon 
introducing new mutually one-to-one coordinates on the surface 

p* SE $ (Es t> the objecta fP (%, q 
%s = %a (%‘, t), 

and ba (%, $1 defined by the same rules 
will be related to aa”’ (%‘, $1 and bQ’ (%‘, t) by the ~~a~~ 

@ (6, t) = @’ (E’ (E, q, t) %s (E’ (%, q, 0 + 
(5. u 

Forthe coordinate system p to be a ray system, the objects & and b” 
should agme; by using (5. YJ aud going over to the fndepeodent vari&les %a’, this 
condition can be written in the form of a system of equations 

(5.21 

Let us supplement this dirrodating system of equation8 with the initial conditions 

E’ CP’, P’* 4?) = %l’, $a (%l’, %af, t*) = p (5.3) 

These funcatons cbaractmize the possibla (but csdainly not 6xWing) weak discoat- 
inu&laa. On the surlace where the icrscoad de&vat&es of tke dispXacem#fkt xmde~go a 
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discontimity, the first derivatives of the functions a and dr will undergo discont- 
inuity. Let us make the additional assumption that the branch of s (x, n, t) corres- 
pending to the weak discontinuity under investigation is isolated from the other branch- 
es to the whole range of the independent variables (henceforth, only this branch will 
be understood as s ) in this case the following relationships, related to the “lemma 
on bicharacteristic directions” [19] are valid 

a9 ilk1 
(29 %I(,(~? 9 n n a a Jt am 

jlik -- 
azq 2m T 

(5.5) 

as -=- an, ’ qtikqnjdfdk 
ms 

To obtain (5.5), we should substitute s = 6 (z, n, t) and d, = d, (r, n, t) in- 
to (5.4), differentiate the identity obtained with rape& to the appropriate argument 
and convolute the result with df ( z, n, t) - (it ahould be kept in mind that the identity 
of the relation being differentiated .fs generally violated upon replacing zfJn,nj by 
one, which it will be convenient to do in analyxing flufds and other isotropic media. 
However, Ws can involve violation of the relation (5.5); in this case, small changes 
in the reasaaing are needed, which we do not examine). 

Let us differentiate the equation of the surface of weak discontinuity the field of 
its unit normals with rapect to time in the ray coordinate system (for the sake of 
brevity, the subsequent computations in the paper are performed in the Lagrange coor- 
dinate system, which is affine in the initial confQuratio@ 

azP (5 t) = 
at atqce*t) (x$$+ nPnq) = u%&+ cnp= at 

& cpi'L'eiegajxi%$~+ crap = 
~(z,n* q 
an 

P + 

an,05 t) 

at = $?- + lPnp;~ = - q&r;: + afs ---agnp;~ = 
q+ 

(5.6) 

Since the derivatives of the function s (5, n, t) undergo a discontinuity on the 
wave front, the appropriate limit value is explicitly indicated by a plus. The relat- 
ions 

c (E9 t) = s (x (E, 0, n (E, t), t), et (E, t) = df (x (E, t), n (E, t), t) (5.7) 

x?&i? = 6: - npn,, 
ash 4 t) 

h 
nl =s(x,n,t) 

were used to obtain (5.6). 
According to Sect. 3 and the definition of a ray, (5.6) and (5.7) characterize 

the change in the functions i, np along the rays. Construction of the domain of 
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cakes ~e~KabiK~ of the function s (2, n, 9 does not gernerally permit 
using these equaKons to coustmct the rays and the surface of discontfnuity. However, 
such a possibility is manifeat if the soluKon befort the disc4attnuity is given as a 
part of some twice contimmusly-differenKable solutfon defined in ibe who&! space 
(see Remark 3’). 

6. By analogy with (4.Q we define the ray coordinate system on the surface in 
the shock case by the conditfon 

. . 
maP (E, t) = cp”‘k:n,xiteuekl, (6.1) 

Ifthe~iafrontofthes~trint;ht~~~s~te, thenby using 
(3.5) -(3.8), the selaKa&Mp (2.3), the fint two equaKo&l of the go- ryatem, 
and the reiaKc&Kp (6.1). cao be reduced to the followfng: 

We supplemcrtt the governing system by the iniKa1 con&Korsr (see E&mark 6’) 

h” I (E, 6) et, (E, 41) = 41 (8 (6.3) 

h” N (5, ta) et1 (g, to) = AN (@, N > 2: xi (%, 41) = %’ (@ 



Method of calculating the wave front illtemity 973 

We call a shock weak if the function describing it can be approximated by segments 
of the following series (satisfying the governing system with the initial conditions (6.3)): 

(6.4) 

The form of the sedes (6.4) is selected in a computation such that the discontinu- 
ity in the first derivatives would tend to zero as e + 0 while the discontinuities in 
the higher order derivatives remain finite. Substituting the series(6.4)intothe govern- 
ing system equations, it can be seen that this system turns out to be recurrent in the 
senseofSect. 4 ineachorderin e. Comparing terms in identical powers in e 
in (6.2). we find: 1) the vectors hill, his,, are null vectors of the matrix Ai” = 

m (z&J c&P - (Pk’ (G, 0) qonl, (objects referring to the surface 5’ = 
zt o (f , t)) are marked with the zero), 2) the equations which the functions z! a, 

co, nio, htao satisfy agree witk the equations of Sect. 4 describing acceleration wave 
propagation in the rest domain (see Remark 5’). 

Let us assume that the isolated eigenvalue co2 with the unit normalized null- 
vector of the matrix A’” - ri (E, t) corresponds to the wave under consideration. 
Then we have hl 2O (E, t) = h (E, t) Q (EV Gc hf,&) = rl (L t) Q t&V 0. 
The following equations result for the intensities h (E, t) and rl (E, t) from 
the governing system: 

a In m (SO) c,sJ, (5, t) 29 +h & -2c,v(E,f)h~=O 

2_zp+q a In m (5) coaJn (% t) 
at -cov(5J)+=O 

(6.5) 

V&t)= ~m~~,~co2 (piikzmn(~O~ O)njOnlOll,orirflm 

rl(El to) = AI (5). h (E, to) = A2 65) 

which permit finding the functions q and h , and describing the change in the 
jump in the first and second derivatives of the displacement in a lower approximation 
in e. 

Remark 7’. Equations (6.5) admit an integral since 

d h’ 
dt rfrn (to) cJo = O 

It can be shown that this integral exists for an arbitrary state of the medium ahead 
of the front and, in combination with (4.5), permits a study of the behavior of weak 
shocks even in this case. 

Let us consider a plane, weak shock being propagated in the rest domain of a 
homogeneous medium. In this case, we find from (6.5) 

4 h A2 
E 11 1/ 

1 + cOvAZ (t - to) ’ = 1 + covA2 (t - to) (6.6) 
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which can be converted into a more c form in complete analogy with (1. lo). 
To do this, we let e (E, t) denote the jump in denslty of the surface force during 
passage thrargh the wave front. To the accuracy of second order terms ln e , we 
have fl (E, t) =S 0 (&, t) r (FL t) on the weak shock surface, where 0 (5, r) - eq (E, 

t) m (%J Q2, r (El, ti = r* ce, t) X#’ Having de&red the shock length by the formula 
L (E, t} = 1 Irtl (E, t) I/ I kfg(g, t) 1 * we obtain f, (k t) = A ($+ 8 = eri I k to second 

order accuracy in a in the case of a weak shock. 
The re~~~~ (6.6) can be written ln terms of o and A 

which agte@, -lly, with the formulas deacdbing weak &c&s in a fluid [7]. 
Forsufflcientlylarge t and v #0 , the following aaymptonc iatcardty da* 
laws can be abtained fro= (6.7) and ~~~ for byte and qher- 
i&waves (focpbooc, cyWd, a&spk&a~w~v(~, mpcsetaveSyh 

u - coIl$t t-y d Ic- con& es, 0 - conat (t yrizt)-’ (6.8) 

which is also ln corrrplete agxwmmt with the diaknping kawt found earlier for weak 
shocks ln a fluid f4,5,7,81, 

7. An isotropic hyperelastlo material is de&red by the fact that the potrsntial cp 
is a ihnction of the three principal lnvarlants of the strain tensor, as well as of the 
Lagrange coordinates ln the lnbomogeneons body case. Weak ctimcaa~~ propagat- 
ed in the undeformed dornaln of an irotropls efnttic body will bc either l~1giWlna1 

@i¶ =+ f%) or transverue (htsni = 0) [SO, 2Zj. An isolated elgenvalue of the 
acoustic tensor corresponds to the longitudinal wave, and therefore, the conditions of 
Sect. 4.5 are satisfied. In the case of a weak shock of tlid&ial type* the quant- 
ity v (E, t) 2s generally not zero, so that such waves damp out ln confornrlty with 
(6.8). 

A double elgenvalue of the a&%stic tensor corresponds to a ~~ of trans- 
verse type* hesrce (4.1) does not perrnlt ~~ of the paztrtln of the veer 

hb in the tangent plan% The paition of this vector, exactly as its absolute value, 
is determlned ~~~~~~y from the next equation of the geveH&lng asp w&oh admits 
of two independent corollaries in this case. It follows from (4.4) that in the case under 
ccsislderation the rays turn out to be orthogonal to the successive positions of the front, 
and the ~ove-~~~ corollnricr can be obtained by convo~~g the second equat- 
ion of the gmmfng qstwn wutr Mrt fitid of rtmrds axi binerraatr 
Ca~~~v~~~~~~~~~~~t~~ of-the 

the secoud derlvatlvet of the displacement h (E, tf and the angle 6 (E, t) between 
the v~tar of the cilsconU8 hf, (E, t) and the pdnolpal normal of the ray will 

satisfy the relations 
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(7.1) 

Here ch (x) is the propagation velocity of weakdiscontinuitiesof transverse type 
in the undeformed domain of an isotropic nonliuearly elastic body, and T (E, t) is 
the radius of curvature of the ray 6” . The relations (7.1) agree with the formulas 
of classical linear elasticity theory Cl, 221 (this was noted in 1203 with respect to the 
intensity of the disccutinuity). 

In the case of weak shocks of tiansverse type being propagated in the undeformed 
domain of an Isotropic nonZinearly elastfc body, colliuearity of the vector &II, 16m 
already does not result from the governing system, but just $ll f%* 8 = q ce, $1 

a (Es :) and hm (E, r) = li (E, t) Qk (E, f), whu+ Q and pk are vectors orthogonal 
t0 the unit nOma nko (%, t) t0 the Surf&@ z* = 2”’ (f, t) , The gOVC!mbg $yStem 

results in this case in the equation 

cp mlrn= (x0, 0) njo?&*,n~ ( fiqkrm - + qirkrm 1 qh = 0 

since qwmn (x, 0) ,is a liuear combination of terms of the form k (s) &k’ 
2 mm with different combinations of the superscripts in the case of an isotropic medium, 
the last term in (7.2) vanishes. The law of intensity variation of a weak shock of 
tramverse type consequently turns cut to be exactly the same as in acoustic theory 
Cl, 103. As fs known, according to the acoustic theory, the damping rate is slower 
than that described by (6.8). 

Tfie author is grateful to A. A. Movchan, as well as to the ~~~~n~ of the 
seminar supervised by V. M. Babich, L. A. CaUn and N. V, Zvolinskti, for discuss- 
ions. 
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